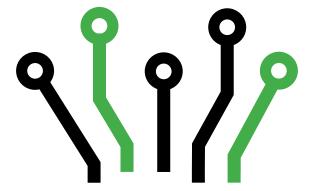


SENSORS


T600 – MEMS TILTMETER

OPERATIONS MANUAL: T600 MEMS TILTMETER

Document Revision History

Document	Rev.	Date	ECO	Changes
n/a	1.0	6/26/19	n/a	Initial release document
201571	Α	8/8/2019	156	Added doc. number and rev.

No part of this operations manual may be reproduced, by any means, without the written consent of BDI.

The information contained within this manual is believed to be accurate and reliable. However, BDI assumes no responsibility for errors, omissions or misinterpretations. The information herein is subject to change without notification.

Copyright © 1989 - 2018

Bridge Diagnostics, Inc. (dba BDI)

WARRANTY INFORMATION

BDI warrants its products to be free from defects in materials and workmanship under normal use and service for thirty-six (36) months from date of shipment. This warranty shall be void if any products have been subjected to modification, misuse, neglect, accidents of nature, or shipping damage. Batteries have no warranty.

All equipment manufactured by BDI is intended for use by a qualified professional only. Under this warranty BDI's obligation is limited to repairing or replacing (at BDI's option) of defective products. In no event shall BDI be liable for punitive, exemplary, special, indirect, incidental, or consequential damages and the customer shall assume all costs of removing, reinstalling, and shipping of defective products. EXCEPT AS STATED HEREIN, BDI MAKES NO WARRANTIES, EXPRESSED OR IMPLIED, AND SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR MERCHANTABILITY.

Before returning any product, BDI technical support must be contacted at +1-303-494-3230 or by visiting <u>BDITEST.COM/contact</u> and submitting a request. A technician will help determine the nature of the problem and if it cannot be resolved, authorization will be given to return the item. A return merchandise authorization (RMA) will be sent to the customer to be filled out and shipped back with the equipment. BDI will not accept shipment of any product without prior authorization as provided herein.

Ship all equipment to:

BDI

ATTN: TECHNICAL SUPPORT
740 S PIERCE AVE UNIT 15
LOUISVILLE CO 80027
+1.303.494.3230

TABLE OF CONTENTS

1.	Introduction	6
	1.1 About the T600 Tiltmeter	6
2.	T600 Overview	7
	2.1 Technical Specifications	
	2.2 Options and Accessories	8
3.	Operation	9
	3.1 Connecting the T600 to Data Acquisition Systems	9
	3.1.1 Electrical Connections	9
	3.1.2 Differential Output Connections	10
	3.1.3 Applying Calibration Factors	10
	3.2 Verifying T600 Output	11
	3.2.1 Resolution/Electronic Noise Test	11
	3.2.2 Output Response Test	
	3.3 Mechanical Zeroing of Tiltmeter After Installation	12
4.	Installation	12
	4.1 Orientation	12
	4.2 Installation on Steel Members	
	4.3 Installation on Concrete Members	19
	4.3.1 Concrete	19
	4.3.2 Concrete Mounting Studs	20
	4.4 Installation on Timber Members	20
5.	Maintenance & Recalibration	20
	5.1 Maintenance	20
	5.1.1 Repair & Replacement	
	1	_

LIST OF TABLES

Table 1: T600 Specifications	8 9
LIST OF FIGURES	
Figure 1: T600 Overview	7
Figure 2: Noise Level from a ±15.0° tiltmeter Using a 24-Bit Data Acquisition System	11
Figure 3: Mounting Positions for T600 Tiltmeter	13
Figure 4: Mounting Hole Spacing for Various Installation Positions	13
Figure 5: T600 Label – MUST Face Up	14
Figure 6: Identifying Metric vs. Imperial Tabs	14
Figure 7: Mounting Tabs Attached for Bottom Mounting	15
Figure 8: Marking Structural Member for Tiltmeter Installation	
Figure 9: Tiltmeter Location Marked for 4 Tabs	16
Figure 10: Steel Member Prepared for Adhesive	16
Figure 11: Tiltmeter Installed on Structural Member	17
Figure 12: Tab Removal Tool (TRT)	18
1.94.6 12. 140 16.10 14. 100 (111.)	

1. Introduction

1.1 ABOUT THE T600 TILTMETER

The single-axis and dual-axis T600 tiltmeters have been designed for use with our in-house manufactured data acquisition systems and are compatible with most other standard data acquisition systems (DAQs). The internal MicroElectroMechanical Systems (MEMS) components allow relatively fast sample rates to be utilized due to their higher frequency response when compared to many other tiltmeters. Another benefit of the T600 tiltmeter is the increased stability over time and temperature making this sensor more suitable for longer term applications in harsh weather conditions.

1.2 ABOUT THIS MANUAL

This is a comprehensive document that explains the functions and features of the T600. BDI manufactures two types of data acquisition systems, which will be referenced throughout the manual.

- 1. **The Structural Testing System (STS):** Rugged, wireless, battery powered DAQ that includes an intelligent (Intelliducer) connector design, which makes the system extremely easy to deploy on a variety of field projects.
- 2. **The Structural Monitoring System (SMS):** Modular system with 4- or 16-channel nodes that can be used in laboratories or on permanent large-scale monitoring projects.

Also, the following highlighted message blocks will periodically appear and contain important information that the user should be aware.

STOP: This symbol and corresponding message represents information regarding the device that if not followed could lead to damaging the device! Pay close attention to this message.

WARNING: This symbol and corresponding message represents vital information and is critical for the device operation and/or the operational settings/configuration.

INFORMATION: This symbol and corresponding message represents general information and/or tips on successfully operating/configuring the device.

2. T600 OVERVIEW

2.1 TECHNICAL SPECIFICATIONS

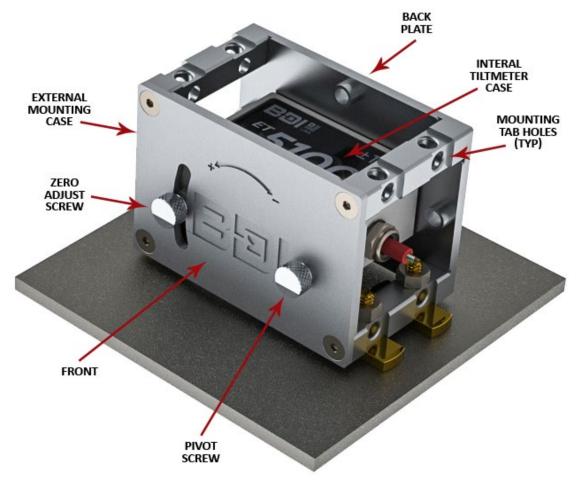


Figure 1: T600 Overview

Table 1: T600 Specifications

MODEL	T611-15	T611-30	T621-15	T621-30	
ТҮРЕ	Uniaxial	Uniaxial	Biaxial	Biaxial	
LINEAR RANGE (ARC DEGREES)	±15	±30	±15	±30	
OUTPUT (mV/ARC DEGREES typical)	275.0	120.5	275.0	120.5	
RESOLUTION (ARC DEGREES)	0.013	0.013	0.013	0.013	
CROSS-AXIS SENSITIVITY (MAX %)	4	4	4	4	
NONLINEARITY (%FS)	0.057	0.011	0.057	0.011	
FREQUENCY RESPONSE	DC to 5 Hz				
SETTLEMENT TIME	400 ms				
EXCITATION VOLTAGE	9-28 Vdc				
RATIOMETRIC ERROR (%)	±1	±1	±1	±1	
POWER RATING MAX: TYPICAL: INTELLIDUCER¹:	75 mW 25 mW 35.5 mW @ +5.0 Vdc				
ОИТРИТ	±2 Vdc				
OPERATING TEMPERATURE ²	-40 °F to 176 °F (-40 °	C to 80 °C)			
TEMPERATURE SENSITIVITY -25°C TO +80°C (TYPICAL, %/°C) -40°C TO +125°C (MAX, %)	±0.013 -2.5 +1				
CABLE	Custom lead cable length made to order: IC-02-187 [22 AWG, 2 shielded pair, drain wire, red PVC jacket] IC-02-250 [22 AWG, 2 shielded pair, drain wire, blue PVC jacket] IC-03-250 [24 AWG, 3 shielded pair, drain wire, black PVC jacket]				
HOUSING	Machined 6061-Aluminum				
CORROSION PROTECTION	Hard Anodized Clear (MIL-A-8625 Type III)				
WEATHER PROOFING	Designed to exceed IP67				
DIMENSIONS	4.25 x 2.6 x 3 in (108 x 66 x 76 mm)				
WEIGHT	1.2 lb (544 g)				
MOUNTING	Through holes for 1/4 Reusable mounting t	in (M6) bolts or anch abs (gluing/welding)	ors on five sides		

2.2 OPTIONS AND ACCESSORIES

Table 2: T600 Options and Accessories

OPTIONS AND ACCESSORIES			
	Intelliducer Connector – Required for use with STS data acquisition nodes, cable is connected and potted for a weatherproof seal		

Intelliducer connector required with STS Intelliducer data acquisition nodes.
 Temperature lower limit based the electronics, upper limit based on instrumentation cable. Call BDI for wider temperature range cable.

OPERATIONS MANUAL: T600 MEMS TILTMETER

T600 tiltmeters are available in two rotation ranges as shown, with typical applications for each range. If larger rotation ranges are required, please contact BDI.

3. OPERATION

3.1 CONNECTING THE T600 TO DATA ACQUISITION SYSTEMS

This section outlines how to connect and test the T600 tiltmeter for standard data acquisition systems that are designed to handle either differential or single-ended outputs.

3.1.1 Electrical Connections

When using the T600 tiltmeter with STS Intelliducer nodes, the sensor will already be connected to a pre-wired Intelliducer plug and no additional configuration is necessary.

STOP: Improper connections can damage internal components which are not repairable.

When using the T600 tiltmeter with any general-purpose data acquisition systems, the user must verify that the system can supply an excitation voltage of between +9 Vdc to +28 Vdc and required current (1.7 mA @ +15 Vdc). The T600 tiltmeter contains an on-board internal voltage regulator so any voltage in this range will be sufficient and will not affect the calibration factor (i.e. the sensor output is independent of the input voltage).

Using the input/output signals specified in Table 3, the T600 tiltmeter can be configured for either single-ended (signal referenced to Ground) or differential (signal referenced between two dedicated terminals), also shown in **Error! Reference source not found.** and Table 4. Throughout this document, it is presumed that the differential output configuration is used.

Table 3: Electrical Connections

Tiltmeter Signal	Wire Color	Intelliducer Pin	Differential Connection
+ Excitation (+5 to +15 Vdc)	Red	Α	Excitation Positive Input
+ Signal	Green	С	Sensor Positive Input
+2.5 Vdc reference	White	J	Sensor Negative Input

- Excitation (Ground)	Black	K	Excitation Negative Input (Ground)
Shield Wire	Bare	К	Shield, or Excitation Negative Input (Ground)

3.1.2 Differential Output Connections

The measuring axis of the T600 tiltmeter contains two mutually opposite sensing elements, which provides two inclination signals over the differential output wires. This principle removes all common mode measurement errors that are typically present on a single-ended measurement reference to a source voltage. The result of using the differential measurement is reduced noise, improved long-term stability and very low temperature stability, therefore, we recommend that the T600 tiltmeters be used in differential mode only.

Table 4: Differential Output Characteristics

Differential Output Characteristics		
Output Range	-2.0 to +2.0 Vdc	
Output at 0.0° (center of range)	0.0 Vdc	

3.1.3 Applying Calibration Factors

If an STS/SMS system is being used, a calibration factor will be provided by BDI and can be added to the system's calibration file as defined in the supplied software. The output data will be in the units designated by the calibration sheet supplied with each unit.

For use with other DAQs, each T600 tiltmeter is supplied with a Calibration Certificate that provides the following information, as an example:

$$GGF = 0.3307 Degrees/V_{out}$$

where:

GGF = General Gage Factor

0.3307 = Example value for a $\pm 15^{\circ}$ tiltmeter in Arc Degrees

 V_{out} = Signal Output Voltage (Volts DC)

To convert the output signal to the rotation angle:

$$Rotation = GGF \times Signal_{out}$$

where:

Rotation = Measurement in Arc Degrees

GGF = General Gage Factor

Signal_{out} = Signal Output Voltage from the T600 (Volts DC)

If a hardware gain is being used to amplify the output signal, that value will need to be divided out to ensure that the output is in volts DC. The sensor gain that will be used for the T600 tiltmeters is dependent on the DAQ that it is being connected to and how that DAQ is programmed.

WARNING: T600 tiltmeters have been calibrated with precision equipment. It is recommended that they be periodically re-calibrated. For heavy usage, calibrations should be performed on a yearly basis. For lighter usage, once every two years is usually sufficient.

If it is suspected that the T600 tiltmeter unit is out of specification, please contact BDI for evaluation and further information on re-calibrations as outlined in the Warranty section of this manual.

3.2 Verifying T600 Output

Once the tiltmeter is connected either our STS/SMS DAQ, or a third-party DAQ system, it is important to check that it is working properly by rotating it through its full range and ensuring that the output is corresponding to the motion and range in which the sensor is being subjected. The following simple tests should be performed on a periodic basis, especially if the tiltmeter has been dropped or otherwise mishandled. It is best practice to run these tests in the laboratory prior to mobilizing to the field so that there will be adequate time to address any possible issues rather than under stressful conditions on the jobsite.

3.2.1 Resolution/Electronic Noise Test

Set the unit on a flat, non-moving surface and loosen both thumbscrews until they are "snug", but not tight. Adjust the left thumbscrew to be centered between the bottom and top of the arc. Without touching the unit, run a short test (approximately 15-20 seconds), store the data at approximately 30 Hz or higher, and verify that the response is stable at the DAQ's resolution limit. If significant electronic noise is present, double-check the hookup and evaluate if there are any possible grounding or errant voltages. For example, if the unit is sitting on an ungrounded metal surface, electronic noise can be induced into the very sensitive sensor, therefore, make sure the test specimen is grounded at the same potential as the DAQ unit. Figure 2 illustrates a typical noise level of a $\pm 15.0^{\circ}$ tiltmeter using a 24-bit data acquisition system.

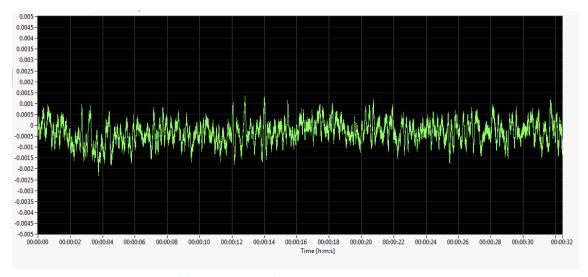


Figure 2: Noise Level from a ±15.0° tiltmeter Using a 24-Bit Data Acquisition System

3.2.2 Output Response Test

Set the STS/SMS DAQ or a third-party DAQ system in a "real time" output display mode. Loosen both thumbscrews to "snug" (but not tight), and, beginning with the left thumbscrew in mid-position of its arc, rotate the thumbscrew through its arc in the negative (up) direction and verify that the output being displayed does indeed correspond to a negative angle. Then, rotate the sensor back to the center of the range, and perform the same operation in the positive (down) direction, verifying a positive output.

Depending on the angle range of tiltmeter used, the output should display its full range before hitting the maximum output range. Tighten both thumbscrews and put the STS/SMS DAQ or a third-party DAQ system in "collection" mode at a sample frequency equal to or higher than 30 Hz. With the unit sitting on a table, apply a smooth positive rotation to the whole unit followed by a smooth negative rotation. The output for the entire range should be a positive curve followed by a negative curve and should not appear jagged or otherwise incorrect.

Once the T600 tiltmeter has passed the preliminary steps outlined above, it should be ready for field use.

3.3 MECHANICAL ZEROING OF TILTMETER AFTER INSTALLATION

Depending on the sensitivity of the T600 tiltmeter, the sensor will need to be manually zeroed after installation and before testing to ensure that the entire range can be utilized. Manual zeroing requires the sensor to be connected and the STS or DAQ software to be running. Using the "real time" output display in the software, adjust the tiltmeter using the thumbscrew until the output reads at or near zero. Be sure to tighten both thumbscrews before proceeding with tests.

4. Installation

There are several alternative mounting methods that can be used depending on the orientation, location, material being mounted to (steel, concrete, timber), and the length of test (hours, weeks, months, years). Due to the large number of variables associated with adhesive use (thermal cycles, UV exposure, vibration, impact, moisture, corrosion of base steel, etc.) adhesive is recommended for temporary testing and monitoring applications only. Please contact BDI for further mounting alternatives.

4.1 ORIENTATION

T600 tiltmeters are designed for uniaxial and biaxial measurements, meaning they measure rotation along either one axis or two axes depending on the model selected. Since the sensor is gravity-based, it must be oriented with the serial plate facing up for each of the four possible positions.

The T600 tiltmeters can be installed on many structure types and in all types of applications, so it is impossible to outline all of the details for each installation. However, with practice and experience, the user can select from a combination of the mounting techniques that BDI has developed over the years.

The T600 tiltmeter has been designed with four mounting options as shown in Figure 3.

- 1. Back Mount
- 2. Bottom Mount
- 3. End Mount
- 4. Top Mount

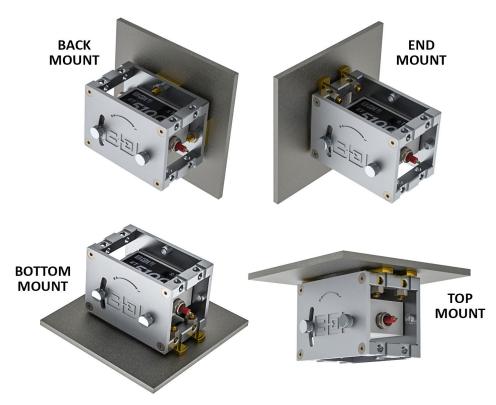


Figure 3: Mounting Positions for T600 Tiltmeter

Once it has been determined which orientation the sensor is to be used, the surface will need to be marked accordingly. Figure 4 provides the center of the mounting tab locations as measured from the centerlines for the various configurations.

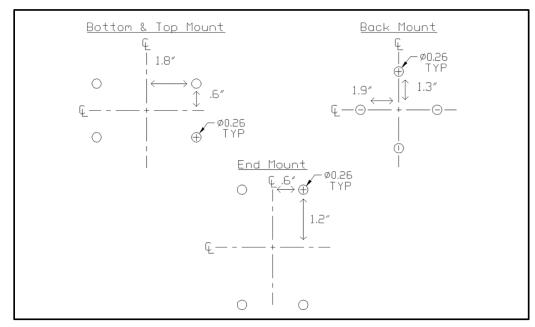


Figure 4: Mounting Hole Spacing for Various Installation Positions

WARNING: It is imperative that the black and silver serial plate shown below to **ALWAYS BE FACING UP**.

Figure 5: T600 Label – MUST Face Up

4.2 Installation on Steel Members

In most situations, the most efficient and least invasive method of mounting the T600 tiltmeter for short term applications is using the tab/glue system, as shown below for an example flat steel plate.

INFORMATION: BDI manufactures both Imperial (1/4-20) and metric (M6) tabs. To easily distinguish them from each other, BDI has scribed all metric items as seen in Figure 6.

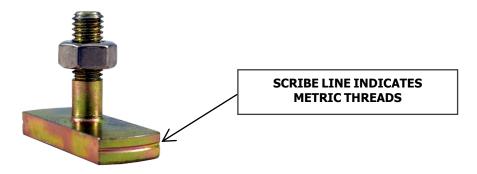


Figure 6: Identifying Metric vs. Imperial Tabs

1. Place 4 tabs in mounting holes (in this case, the four bottom holes as shown in Figure 7) and tighten the 1/4-20 (or M6) nuts to approximately 40 in-lbs (4.5 Nm). Note that the Top, Bottom, and End Mountings have machined slots to hold the tabs. The back mount does not have machined slots so a vise grip (or similar tool) will be needed to hold the tab in place while tightening.

Figure 7: Mounting Tabs Attached for Bottom Mounting

2. Locate the centerline of the gaging area in both the longitudinal and transverse directions. First, locate the midpoint and draw two centerlines as shown in Figure 8. The longitudinal centerline should be approximately 8 in (203 mm) long and the transverse centerline should be approximately 6 in (152 mm) long. This will allow the marks to be seen while the tiltmeter is being installed.

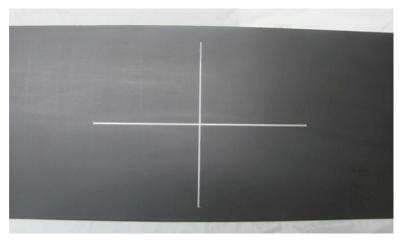


Figure 8: Marking Structural Member for Tiltmeter Installation

3. To complete the locating sequence, make two marks at approximately 1.8 in (46 mm) on either side of the transverse centerline and two marks at 0.6 in (15 mm) above and below the longitudinal centerline as shown in Figure 9. An alternate way of marking these locations is to hold the tiltmeter in place over the two centerline marks and making small marks where the tabs will be installed, then use a T-square to complete tab marking.

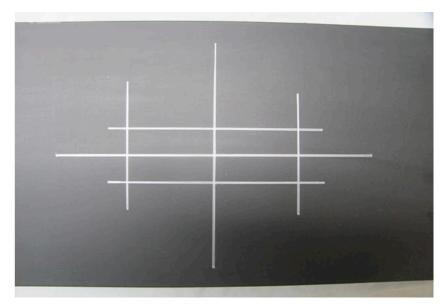


Figure 9: Tiltmeter Location Marked for 4 Tabs

4. Remove paint or scale from the areas shown in Figure 10 using a power grinder until a clean metal surface is obtained.

REMEMBER: Always wear adequate personal protective equipment such as goggles, earplugs, and facemasks while grinding. Also, due to generated sparks, insure that there are not flammable liquids or other materials nearby that can be ignited.

Figure 10: Steel Member Prepared for Adhesive

5. Next, very lightly grind the bottom of the tabs that have already been mounted to the sensor to remove any oxidation and/or other contaminants. Before mounting, set the sensor in the location it is to be attached, and ensure that all four tabs seat uniformly on the member and that the unit does not "rock" as this is important for achieving a good bond.

OPERATIONS MANUAL: T600 MEMS TILTMETER

- 6. Apply a thin line of adhesive to the bottom of each tab (see "Information" below) about ¼ in (6.4mm) wide. Mount the sensor in the marked location, and then pull it away. This action will apply adhesive to the structural member at each of the four-tab locations.
- 7. Spray the four adhesive spots on the structural member with "light shots" of the adhesive accelerator (Loctite Tak Pak 7452, Part # 18637 in 0.7 oz aerosol spray container).
- 8. Very quickly, mount sensor in its proper location and apply a light force to the top of the tabs for approximately 15-20 seconds.

If the above steps are followed, it should be possible to mount each sensor in approximately five minutes. A mounted tiltmeter is shown in Figure 11.

INFORMATION: Loctite 410 is suggested to be used for short installations, such as a load test.

Loctite H4500 suggested for applications where Loctite 410 is not adequate, such as longer duration load tests, high force application, or temporary monitoring applications.

To find the closest Loctite Distributor please call 1 (800) 243-4874 or visit www.loctite.com

Figure 11: Tiltmeter Installed on Structural Member

Once testing is completed, the tiltmeter will need to be carefully removed from the structural member. Due to the geometry of the T600 tiltmeter, an end wrench will need to be used to remove the nuts from the tabs. Unthread the nuts and **carefully** remove the T600 tiltmeter from the tabs. Note that due to the tight tolerances of the mounting holes, the Tiltmeter may have to be 'rocked' or 'jiggled' slightly if one or more of the tabs has been bent slightly until it is clear of the tabs.

Often, the above approach will make removing the tabs very difficult from steel members due to the strength of the adhesive. Therefore, BDI has developed a Tab Removal Tool (TRT) to help reduce the possibility of damaging BDI sensors and tabs (see Figure 12). Each TRT has a hex head machined into the bottom face for tightening and/or loosening the designated nut size, and the small hole in the face of the hex head has been threaded to capture the threaded stud.

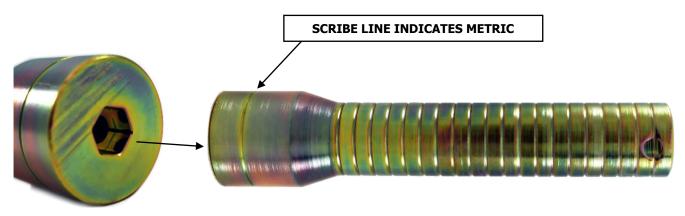


Figure 12: Tab Removal Tool (TRT)

The following instructions describe the method used to remove a sensor that has been mounted to a steel surface. If a TRT is not available, a pair of vise grips can be used although there is a greater chance of damaging the tabs using a vise grip.

- 1. The T600 tiltmeters will require a 7/16 or M10 end wrench to loosen and remove the nuts on the end of the Tabs. Once all the nuts are removed, slide the T600 tiltmeter off of the mounting tabs.
- 2. Thread the TRT on to the tab until the face is flush with the foot of the tab as seen below. If a gap remains between the TRT and the tab foot, there is a high likelihood that the stud will be bent in the next step. Also, do not over tighten the tab into the TRT or it will be hard to remove the tab from the TRT. After a few tries this process will become a simple procedure.

Figure 13: Tab Removal Tool with Tab Screwed On

3. In the direction of "thin" axis of the tab as shown in Figure 14, give the TRT a quick tug or tap and the tab should pop off the member surface. Depending on how well the tab is fixed, particularly on a steel surface, more force may be required. In this case, simply hit the handle of the tool with a small rubber mallet. Note that holes in the top of the tool have been supplied so that a lanyard can be added if necessary.

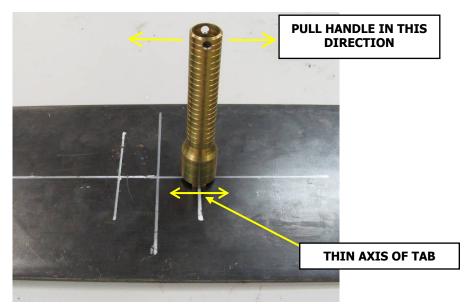


Figure 14: Removing Tab with TRT

- 4. Unthread the tab from the TRT and continue with the other sensors. If the tab remained with the sensor during removal, use vice grips to hold the foot of the tab while loosening the nut. Sometimes, tabs may be damaged during the removal process, especially if a TRT is not available. For example, threads can be slightly deformed, requiring either disposal or the use of a 1/4-20 (or metric M6) die to allow smooth operation.
- 5. The tabs can be re-used by soaking them in acetone for 30-40 minutes to remove the hardened adhesive. Be sure to cover the container since the acetone will evaporate quickly and is very flammable!

STOP: Acetone is extremely flammable! Use only in properly ventilated areas and avoid any possible ignition sources.

4.3 Installation on Concrete Members

4.3.1 Concrete

In general, the basic tab and glue technique described above is suitable for most applications, however, if any of the following parameters exist, BDI recommends using mechanical anchors rather than glue:

- + If concrete is moist or wet
- + If the sensor must remain in place for more than a day or two
- + If the structure being instrumented is subjected to significant vibrations (e.g. traffic)
- + If the instrumented areas are directly over automobile or train traffic where if the sensor came loose, it could create a hazard
- + If the instrumented area is difficult to re-access during the testing period in case sensor comes loose

If it is judged that the tab and glue system is insufficient, some extra steps should be followed when using this method for concrete members. The primary concern when mounting sensors on either reinforced or pre-stressed concrete is that the surface must be clean, dry, and dust-free in order for the glue to adhere. Therefore, it is highly recommended that compressed air (either in cans or from a compressor) be used to remove the dust after grinding has been completed. Follow the above steps as outlined for steel, except just prior to applying the glue to the tabs, use the compressed air to clean any surface dust away from the mounting point.

4.3.2 Concrete Mounting Studs

If it is judged that the conditions warrant more secure mounting system, then threaded mounting studs can be used. These will require a hole to be accurately drilled in the concrete with a hammer drill as described below.

- 1. Locate the gaging point on the structure and mark out the hole spacing as described in Section 4.1 . Using a concrete drill, drill a hole using a 3/8 in concrete drill bit approximately 1.0 in deep. If mounting to pre-stressed concrete, ensure to avoid drilling into the pre-stressing tendons.
- 2. Drop in the 1/4-20 x 1-1/2 in Power Fasteners Power-Stud or similar and lightly tap in with a hammer to set.
- 3. Slide the sensor over the stud.
- 4. While holding the sensor in place, screw a nut on the stud and tighten with an open-end wrench.

4.4 Installation on Timber Members

If the T600 tiltmeter is to be mounted to a timber member or other relatively soft materials, use a 1-1/2 in self-tapping screw and a power screwdriver. If the wood has any sort of glue laminated section or it has been chemically treated, it is recommended that a pilot hole be drilled.

5. Maintenance & Recalibration

5.1 MAINTENANCE

INFORMATION: It is highly recommended that each T600 tiltmeter be tested in the laboratory prior to each field mobilization.

- + Recalibration: It is recommended that the T600 tiltmeters be recalibrated at least every two years.
- + **Maintenance:** The T600 tiltmeter has been designed to minimize the amount of maintenance required to remain operational. The units are completely sealed internally, and the only available replacement component is splicing a new section of instrumentation cable. At least 12 in (300mm) of cable exiting the tiltmeter body is required for this procedure.
- + **Cleaning:** The mounting holes should periodically be inspected and cleared of any debris and adhesive. To remove adhesive from the mounting holes, use the tip of a shop rag or cotton swab wetted with acetone. Wipe the adhesive until it dissolves. Afterwards, a shop rag with mild soapy water can be used to remove other debris.

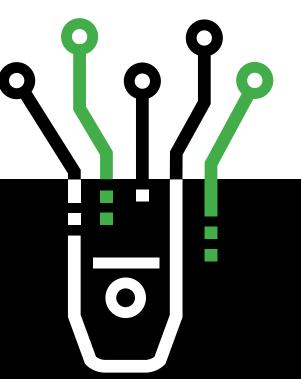
STOP: Acetone is extremely flammable! Use only in properly ventilated areas and avoid any possible ignition sources.

Mounting Tabs: Mounting Tabs have been designed to be reusable by simply dissolving the adhesive with acetone. Acetone can be re-used multiple times, but if it becomes too saturated with adhesive it will start leaving a thin layer of adhesive in the threads of the mounting tabs. Also, sometimes when the mounting tabs are removed from a structure the top threads can be chipped. If it becomes hard to thread nuts onto the mounting tab stud, run a 1/4-20 (or M6) die down the threads to remove the chips and adhesive from the threaded stud.

5.1.1 Repair & Replacement

If a T600 tiltmeter is damaged beyond repair, BDI will provide the original customer an option to purchase a replacement unit at a discounted price. Please contact BDI to obtain authorization for return of the unit as instructed in the Warranty Information section of this manual.

20


OPERATIONS MANUAL: **T600 MEMS TILTMETER**

DATA YOU CAN TRUST. RESULTS YOU CAN BUILD ON.

P +1.303.494.3230 740 S PIERCE AVE UNIT 15 F +1.303.494.5027 LOUISVILLE CO 80027

BDITEST.COM sales@bditest.com

